Step of Proof: adjacent-append
11,40
postcript
pdf
Inference at
*
1
2
2
I
of proof for Lemma
adjacent-append
:
.....wf..... NILNIL
1.
T
: Type
2.
x
:
T
3.
y
:
T
4.
L1
:
T
List
5.
L2
:
T
List
6.
i
: {0..(||
L1
@
L2
|| - 1)
}
7.
x
= (
L1
@
L2
)[
i
]
8.
y
= (
L1
@
L2
)[(
i
+1)]
9.
(
i
< ||
L1
||)
10. 0 < ||
L1
||
11. 0 < ||
L2
||
(
null(
L1
))
latex
by ((DVar `L1')
CollapseTHEN (((All Reduce)
CollapseTHEN (Auto
))
))
latex
C
.
Definitions
True
,
b
,
{
x
:
A
|
B
(
x
)}
,
,
i
j
<
k
,
A
B
,
P
&
Q
,
Void
,
n
-
m
,
||
as
||
,
P
Q
,
x
:
A
B
(
x
)
,
n
+
m
,
#$n
,
,
l
[
i
]
,
[
car
/
cdr
]
,
as
@
bs
,
a
<
b
,
A
,
{
i
..
j
}
,
type
List
,
Type
,
False
,
t
T
,
s
=
t
Lemmas
true
wf
,
not
wf
,
false
wf
origin